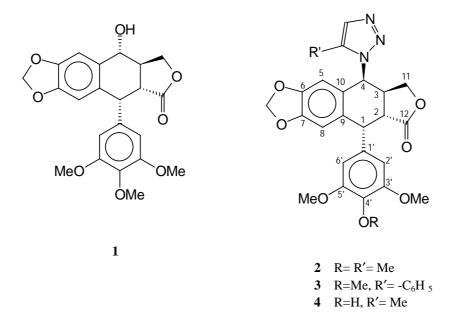
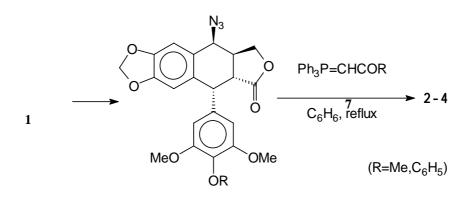
Synthesis and Antitumor Activity of 4β-(1,2,3-Triazol-1-yl) podophyllotoxins


Chang Nian CAO², Yu Yin CHEN¹, Yan Guang WANG¹*, Yao Zu CHEN¹

¹Department of Chemistry, Zhejiang University, Hangzhou 310027; ²Department of Applied Chemistry, Qinghai University, Xining 810000


Abstract: Three 4β -(1,2,3-triazol-1-yl) podophyllotoxins **2~4** have been synthesized and tested for their antitumor activity *in vitro*. The compound **3** was found to be much more cytotoxic than the clinically used etoposide (VP-16) against L1210 cells.

Keywords: Podophyllotoxin, antitumor, synthesis.

Semisynthetic analogues of the naturally occurring podophyllotoxin **1** have renewed interest in recent years as a result of the development of etoposide (VP-16) as anticancer drug¹⁻⁶. In previous studies⁷⁻¹³, we found that a number of 4β-amino- or amido-podophyllotoxins were as active or more active than VP-16. Here, we report the synthesis and *in vitro* antitumor activity of three 4β-(1,2,3-triazol-1-yl) podophyllotoxins with structural features shown in formulae**2~4**.

Chang Nian CAO et al.

Scheme 1. Synthesis of 4β-(1,2,3-triazol-1-yl)podophyllotoxins

5 R=Me; **6** R=H

Tuble 1. 1 hysical 1 toperites and 7 marytic Data of Compounds 2 4				
Compound*	Yield	m.p.	IR(KBr)	MS(EI,70eV)
	(%)	(°C)	(cm ⁻¹)	m/z
2	63	141-143	1778 (lactone), 1585, 1505 and	479 (M ⁺ ,54), 397 (24)
			1482 (aromatic C=C)	196 (65), 381 (10)
3	52	232-235	1780 (lactone), 1585, 1505 and	541 (M ⁺ ,39), 495 (5)
			1485 (aromatic C=C)	397 (32), 396 (100)
4	42	160-162	1762(lactone), 1580, 1510 and	465 (M ⁺ ,23), 383 (34)

Table 1. Physical Properties and Analytic Data of Compounds 2~4

* The microanalyses were in satisfactory agreement with the calculated values (C, H and N) within $\pm 0.27\%$.

1480 (aromatic C=C)

382(100), 369(4)

The 4 β -(1,2,3-triazol-1-yl)podophyllotoxins 2~4 were synthesized as shown in Scheme 1. A mixture of podophyllotoxin 1 and HN3 in CH2Cl2 was treated with a solution of BF3·OEt2 in CH2Cl2 to give 4 β -azidopodophyllotoxin 5. The bulky C-1 α pendant aromatic ring dictates the reaction to be stereoselective in yielding the 4 β -azido isomer as the major products. The ratio between 4 β -azidopodophyllotoxin 5 and its 4 α -isomer was about 15:1 according to TLC analysis. The assignment of the configuration at C-4 for compound 5 was based on the difference of J_{3,4} coupling constants. The 4 β -substituted podophyllotoxins have a J_{3,4} \approx 4.5Hz, due to a *cis* relationship between H-3 and H-4^{14,15}. The 4 α -substituted isomers, however, have a J_{3,4}

Synthesis and Antitumor Activity of 4β-(1,2,3-Triazol-1-yl) 1005 podophyllotoxins

\geq 10.0Hz as H-3 is *trans* to H-4^{14,15}.

The 4β -azido-4'-O-demethylpodophyllotoxin 6 was obtained from 1 in three steps by our previous method7-13. The 1,3-dipolar cycloaddition of azides 5 and 6 with the corresponding alkylidenephosphoranes 716 in anhydrous benzene under reflux resulted in 1,2,3-triazoles 2, 3 and 4, respectively.

All new compounds were characterized by m.p., IR, 1HNMR and MS spectra as well as elemental analysis as shown in Table 1 and 2.

Compound	1 δ(ppm)
2	7.517 (s,1H), 6.611 (s,1H), 6.411 (s,1H), 6.352 (s,2H), 5.943 (dd,2H), 5.683 (d, J = 5.4Hz, 1H),
	4.788 (d, J = 5.1Hz, 1H), 4.208 (t,1H), 3.942 (dd,1H), 3.797 (s, 3H), 3.752 (s, 6H), 3.208 (m, 1H),
	3.013 (dd,1H), 2.365 (s, 3H).
3	7.771 (s, 1H), 7.590 and 7.375 (m, 5H), 6.603 (s, 1H), 6.417 (s, 1H), 6.311 (s, 2H), 5.942 (dd, J =
	1.2,15.0 Hz, 2H), 5.723 (d, J = 5.4 Hz, 1H), 4.788 (d, J = 5.1 Hz, 1H), 4.184-4.095 (m, 2H),
	3.772 (s, 3H), 3.723 (s, 6H), 3.194-3.051 (m, 2H).
4	7.52(s, 1H), 6.62 (s, 1H), 6.42 (s, 1H), 6.37 (s, 2H), 5.94 (brs, 2H), 5.68 (d, J= 5.4 Hz, 1H), 5.46(s,
	1H), 4.79 (d, J = 5.1Hz, 1H), 4.22(t, 1H), 3.92 (d, 1H), 3.78 (s, 6H), 3.37 (s, 3H), 3.21-3.01 (m,
	2H).

The *in vitro* cytotoxicity test was carried out in L1210 cells. **2** ($ID_{50} = 0.13\mu M$) and **4** ($ID_{50} = 0.17\mu M$) exhibited almost equivalent activity to VP-16 ($ID_{50} = 0.15\mu M$), whereas **3** ($ID_{50} = 0.0030\mu M$) was 50-fold more cytotoxic than VP-16 against L1210 cells. Further biological evaluation of synthesized compounds is in progress, and the results will be reported elsewhere.

References

- 1. P. J. O'Dwyer, B. Leyland-Jones, M. T. Alonso, S. Marsoni, R. E. Wittes, *N. Engl. J. Med.*, **1985**, *312*, 692.
- K. H. Lee, "Antineoplastic Agents for Chinese Traditional Medicine and their Analogs. I Huaman Medicinal Agents from Plants," American Chemical Society, Symposium Series, A. D. Kinghorn and M. Balandrin, Eds., American Chemical Society, Washington, DC, 1993, pp. 170.
- 3. Y. L Zhang, A. Tropsha, A. T. McPhail, K. H. Lee, J. Med. Chem., 1994, 37, 1460.
- X. M. Zhou, K. J. H. Lee, J. Cheng, S. S. Wu, H. X. Chen, X. Guo, Y. C. Cheng, K. H. Lee, J. Med. Chem., 1994, 37, 287.
- 5. A. Kamal, N. L. Gayatri, Tetrahedron Lett., 1996, 37, 3359.
- 6. L. Daley, P. Meresse, E. Bertounesque, C. Monneret, Tetrahedron Lett., 1997, 38, 2673.
- 7. X Tian, Y. G. Wang, M. G. Yang, Y. Z. Chen, Life Sci., 1997, 60, 511.
- 8. J. L Pan, Y. G. Wang, Y. Z. Chen, *Current Sci.*, **1997**, 72, 268.

Chang Nian CAO et al.

- 9. Y. G. Wang, L. Tao, J. L. Pan, J. F. Shi, Y. Z. Chen, Chem. J. Chin. Univ., 1997, 18, 1061.
- Y. Z. Chen, Y. G. Wang, J. X. Li, X. Tian, Z. P. Jia, P. Y. Zhang, *Life Sci.*, **1989**, 45, 2569.
 Y. G. Wang, J. L. Pan, J. F. Shi, Y. Z. Chen, *Life Sci.*, **1997**, 61, 537.

- K. K. Lu, Y. G. Wang, Y. Z. Chen, Synthetic Commun., 1997, 27, 1963.
 J. L. Pan, Y. G. Wang, Y. Z. Chen, Acta Pharmaceutica Sinica, 1997, 32, 898.
- 14. Y. L. Zhang, Y. C. Shen, Z. Q. Wang, H. X. Chen, X. Guo, Y. C. Cheng, H. K. Lee, J. Nat. Prod., 1992, 55, 1100.
- Z. Q. Wang, H. Hu, H. X. Cheng, Y. C. Cheng, K. H. Lee, J. Med. Chem., 1992, 35, 871.
 L. Jacques, W. Claude, Synth. Commun., 1984, 37, 496.

Received 29 June 1999